Theoretical-Experimental Analyses of Simple Geometry Saturated Conductivities for a Newtonian Fluid
نویسندگان
چکیده
The conductivity (K) of porous media represents an important physical parameter in several areas of knowledge. In saturated flow, the saturated conductivity (K0) is the most important parameter of porous system and it is related to the fluid and porous media properties. In order to evaluate the potential of a new tool for measuring K0, such as the computational simulation with Boltzmann models for fluid flows, two experiments were carried out using two simplified media: 1) a cylindrical cavity and 2) a cavity having a parallelepiped shape. Both have simple geometries that allow analytical K0 solutions in order to compare with the experimental and simulated results. Glycerin was used as infiltrate fluid due to its high viscosity that permits laminar flows and the use of Darcy’s law to evaluate K0. The results demonstrate a good agreement among techniques (experimental, computational, and analytical) of K0 determination for cavities that present Reynolds number (Re) smaller than one.
منابع مشابه
Experimental studies of streaming potential and high frequency seismoelectric conversion in porous samples
Streaming potential across a porous medium is induced by a fluid flow due to an electric double layer between a solid and a fluid. When an acoustic wave propagates through a porous medium, the wave pressure generates a relative movement between the solid and the fluid. The moving charge in the fluid induces an electric field due to the seismoelectric conversion. In order to investigate the stre...
متن کاملDetermination of Thermal Resistance in Three-Dimensional Analysis of Micro-Channel Heat Sink with Non - Newtonian Fluids
Micro-Channel Heat Sink is a heat exchanger which is used to control the temperature of electronic devices with high heat flux. A comprehensive thermal model for the micro-channels should include three dimensional conduction analysis in the solid body together with three dimensional developing fluid flow as well as heat transfer analyses in the fluid section. This paper reports on a research ...
متن کاملDetermination of Thermal Resistance in Three-Dimensional Analysis of Micro-Channel Heat Sink with Non - Newtonian Fluids
Micro-Channel Heat Sink is a heat exchanger which is used to control the temperature of electronic devices with high heat flux. A comprehensive thermal model for the micro-channels should include three dimensional conduction analysis in the solid body together with three dimensional developing fluid flow as well as heat transfer analyses in the fluid section. This paper reports on a research ...
متن کاملNumerical Simulation of Laminar Convective Heat Transfer and Pressure Drop of Water Based-Al2O3 Nanofluid as A Non Newtonian Fluid by Computational Fluid Dynamic (CFD)
The convective heat transfer and pressure drop of water based Al2O3 nanofluid in a horizontal tube subject to constant wall temperature condition is investigated by computational fluid dynamic (CFD) method. The Al2O3 nanofluid at five volume concentration of 0.1, 0.5, 1.0, 1.5 and 2 % are applied as a non Newtonian power law and Newtonian fluid with experimentally measured properties of density...
متن کاملSelection of nanofluid for heat transfer applications from existing models of thermal conductivity
Nanofluids are gaining much importance over the past decade due to their enhanced thermal conductivity, specific heat, cooling capacity, electrical conductivities. Novel properties of nanofluids are yet to be explored to the highest potential applications. One of the prominent applications of nanofluids is in thermal conduction. The presence of nanoparticle in a fluid can enhance the thermal co...
متن کامل